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a b s t r a c t

Efficient sampling of signals is a key issue for multiple-dimensional NMR experiments to establish the
best ratio between experiment time and spectral quality. Focussing on the most widely used sampling
strategy using standard rectangular sampling and data analysis by Fourier transformation, a central ques-
tion is concerned with determining the optimal maximum sampling time in the individual dimensions.
The spectral resolution depends directly on this choice, as do the overall experiment times when address-
ing the indirect dimensions. We present a theoretical, numerical, and experimental analysis of the sam-
pling space problem and propose approaches to efficient sampling for typical cases.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Long experiment times are one of the great obstacles for multi-
dimensional NMR experiments, typically induced by intrinsic low
sensitivity of the sample, the need for transient-consuming phase
cycling [1,2], or because it is necessary to sample a large number
of points in indirect dimensions to achieve sufficient spectral reso-
lution. To reduce the experiment time, the costly achievement of
high resolution in indirect dimensions is often compromised by
choosing a shorter maximum sampling time, ts, corresponding to
fewer time increments. In addition, this dilemma has inspired a
host of different strategies for sampling the indirect dimensions
of multiple-dimensional experiments to optimize efficiency and
resolution through appropriate selection of data points between
times 0 and ts.

To illustrate the maximum sampling-time problem, we con-
sider the conventional and by far most used sampling technique
with data points arranged in a rectangular grid in the range
0 6 t 6 ts. This sampling scheme is convenient since it allows for
easy data processing using standard Fourier transformation proce-
dures. Generally, it will be safe to treat each spectral dimension
independently, although certain schemes, e.g., circular [3] or trian-
gular [3,4] sampling, may introduce correlation between the in-
volved spectral dimensions for severely truncated datasets.
ll rights reserved.
In this paper, we present a systematic analysis of the spectral
consequences of the chosen size of the sampling space, here de-
fined by the maximum sampling time, ts. To keep the analysis as
transparent as possible and to avoid correlation of spectral dimen-
sions, we restrict the present study to equidistant sampling, which
– although an increasing number of exotic new sampling methods
is introduced and extensively debated – still represents by far the
most used sampling strategy in the NMR community. This by itself
is a strong motivation for our present focus. In this context, we
note that although alternative sampling strategies relying on equi-
distant sampling may induce minor correlation between sampling
in different dimensions, as discussed above, the results may still be
used as guidelines for estimating the overall geometry of the sam-
pling space as expressed by the choice of ts. Likewise, we should
note that the present analysis cannot be used to predict the resolu-
tion and sensitivity when using more sophisticated processing
models such as maximum entropy [5–7], where the resolution de-
pends on the deconvolution kernel and the abundancy of peak
artefacts is more of an issue than the sensitivity/SNR depending
on the white noise in the FID. The manuscript is organized as fol-
lows. First, we introduce the basic concepts of sampling, resolution,
sensitivity, and through this the theory underlaying our analysis of
sampling strategies. Next, we introduce recipes for optimal sam-
pling under various conditions. Finally, we demonstrate the power
of efficient sampling as compared to conventional sampling in the
context of 1H–15N separated-local-field (SLF) experiments for a 15N
labeled single crystal of N-acetyl-L-leucine (NAL) serving as a mod-
el system for uniaxially oriented membrane proteins.
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2. Theory

Our analysis of efficient sampling strategies is conducted in sev-
eral steps, which – along with some of the necessary definitions
concerning parameters for the NMR signal, our target spectral
quality, and our manipulations, all of which are summarized in Ta-
ble 1 – may be listed as: (i) assuming a certain natural linewidth of
the resonances (induced by relaxation, field inhomogeneity, pulse
sequence imperfections, etc.), kn, we calculate the signal-to-noise
ratio (SNR) and sensitivity (vide infra), the resulting linewidth
(henceforth denoted the target linewidth, kt), and the severity of
the truncation-induced sinc wiggles (identified by the wiggle
height, w) as a function of ts. (ii) We consider apodization as a
means to reduce wiggles and increase the sensitivity by introduc-
ing the apodization linewidth, ka, to the analysis. (iii) While ts and ka

in combination determine the spectral appearance, it is more
useful to describe the spectral quality based on the sensitivity,
the target linewidth, and the wiggle height and use these sam-
ple-dependent parameters to determine suitable values for ts and
ka. That is, the abundance and proximity of resonances may define
a need for a certain spectral resolution (upper limit for kt), and sim-
ilarly, maximum tolerable wiggle height is sample dependent since
it depends on, e.g., the risk of falsely interpreting the wiggles as
real peaks. In order to use these findings as guidelines to set up
of the sampling space in multidimensional NMR experiments, we
present empirical formulas to calculate ts and ka as functions of
kt and w. (iv) Finally, we demonstrate the relevance of efficient
sampling in the context of oriented-sample solid-state NMR spec-
troscopy, although here emphasizing that our analysis and sam-
pling strategies is completely general and apply to all kinds of
multiple-dimensional experiments.

2.1. Sampling with optimal signal-to-noise ratio

The challenge of choosing the right size of the sampling space
for a particular sample is illustrated by the one-dimensional
example in Fig. 1. Fig. 1a shows the SNR as a function of the sam-
pling time, ts for Lorentzian and Gaussian peaks with a natural
(full-width-half-height; FWHH) linewidth kn, under the assump-
tion of equidistant sampling. From this graph, it is clear that a
sampling time of ts � 0.4/kn (for a Lorentzian resonance;
Table 1
List of the various parameters used in the article.

Parameter Description

ts Maximum sampling time. Denotes the maximum sampling time for a p
detailed by a specific dimension (n)

k Linewidth. Generic representation of a full-width at half-height (FWHH
kn Natural linewidth. Denotes the FWHH linewidth for resonances in a part

by relaxation, field inhomogeneity, pulse sequence imperfections, etc
ka Apodization linewidth. Denotes the FWHH linewidth of the apodization
kt Target linewidth. Denotes the resulting FWHH linewidth for a resonanc
w Wiggle height. Denotes the fractional height (relative to the peak height)
S Signal. Denotes the signal intensity (in arbitrary units) of either the tim
N Noise. The noise is assumed to be white noise entering the time-domain
SNR Signal-to-noise ratio. The SNR is defined on an arbitrary scale where the
nSNR Normalized SNR. Denotes the SNR achieved with a specific set of param
sensitivity Sensitivity. The sensitivity represents the SNR per unit time (cf. Eq. (1)) an

overall acquisition time is proportional to ts

AL Lorentzian apodization function. Defined in Eq. (3)
AG Gaussian apodization function. Defined in Eq. (3)
L Lorentzian linewidth. L ¼ ka þ kn

G Gaussian linewidth. G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

a þ k2
nÞ=ð4 ln 2Þ

q
Ga Shorthand notation for Ga ¼ ka=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 ln 2Þ

p
D Doublet splitting parameter. Measure of the ‘‘valley” between two close
np Number of points. Number of complex data points in FID/spectrum
sw Spectral width
Dm Digital resolution. Denotes the distance between two datapoints in the
ts � 0.52/kn for a Gaussian resonance) would yield maximum
SNR. It is also evident, however, from the corresponding FID and
spectrum shown in Figs. 1e and f that this is achieved at the ex-
pense of substantial broadening and appearance of truncation
wiggles. A quantification of these undesired effects is given in
Figs. 1c and d, which report the linewidth and wiggle height
(i.e., maximum amplitude of sinc wiggles relative to the intensity
of the resonance) in the spectrum as a function of ts. From these
graphs we may conclude, that the truncation effects approxi-
mately double the linewidth of a Lorentzian line when sampled
for maximum SNR.

While optimizing the SNR is relevant for acquisition of the di-
rect dimension in cases where the repetition delay is long com-
pared to ts (i.e., the overall experiment time does not depend on
our choice of ts), we will normally seek to optimize the SNR per
unit time when the total experiment time is proportional to ts. This
is the case for all indirect dimensions using equidistant sampling.
Ernst et al. [8] define the SNR per unit time, typically referred to
as the sensitivity

sensitiv ity ¼ SNRffiffiffiffi
ts
p : ð1Þ

The plot of the sensitivity (Fig. 1b) reveals a monotonously
decreasing functionality, always favouring the shortest possible ts.

Considering these observations together, it is in general impos-
sible to maximize the SNR or sensitivity without compromising the
spectral quality. The excessive truncation linebroadening may be
undesirable for resolution purposes, and wiggles may be as intense
as �35% of the peak height (see Fig. 1d), implying that they may in
unfavourable cases be incorrectly interpreted as signals or cause
undesired cancellation of real signals. The severity of these arte-
facts is sample related, since the problems caused by truncation
linebroadening and wiggles depend on, e.g., the desired resolution,
the density of resonances, and the intrinsic SNR. For example, if the
sample is characterized by only few, well-separated resonances,
the resolution may not be an issue. Likewise, if we have a very
low SNR, we need not worry too much about wiggles, which will
anyway be hidden in the noise or reduced by apodization. On the
other hand, if we are seeking weak cross-peaks close to an intense
diagonal peak, wiggles from the diagonal may hamper a correct
spectral interpretation.
articular dimension of a multidimensional NMR experiment, either generically or

) linewidth
icular dimension of a multidimensional NMR experiment. This linewidth is induced

function (Lorentzian or Gaussian)
e with a natural linewidth ln, under specific acquisition and processing conditions
of the most intense sinc wiggle resulting from truncation of the time-domain signal.
e- or frequency-domain signal

signal as a random function within a certain amplitude
signal intensity is defined as S(m = 0) in Eq. (5) and the noise is defined in Eq. (13)

eters divided by the optimal SNR corresponding to ts !1 and ka ¼ kn

d is used to measure the efficiency of the sampling of indirect dimensions, where the

peaks

frequency domain of a discrete spectrum, i.e., sw/np
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Fig. 1. Plots of (a) signal-to-noise ratio (SNR), (b) sensitivity, (c) linewidth (FWHH), and (d) wiggle height for Lorentzian (solid lines) and Gaussian (dashed lines) resonances as
a function of the maximum sampling time, ts, the lineshape, and the natural linewidth, kn. (e) Free-induction decay for a Lorentzian resonance, and (f) corresponding
frequency-domain signal (black line, ts = 0.4/kn; grey line, ts = 1.6/kn).
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The above example raises two questions that need be addressed
before proceeding with the detailed analysis: (i) can we use the
target linewidth as a measure for the spectral resolution? and (ii)
can we use a continuous description, which allows us to gain more
analytical insight than does a discrete description?

2.2. Measure of spectral resolution

To test the resolution obtained using specific sampling parame-
ters, we evaluate the peak splitting parameter [6]:
D ¼ 1� 2C=ðAþ BÞ, where A and B are the intensities of two peaks
and C is the intensity in the valley between them. A peak splitting
parameter of 0 means no resolution, while two completely sepa-
rated parameters have a peak splitting parameter of 1. Figs. 2a
and b show the domains where D > 0.1 in shade in plots of the peak
distance vs. the sampling time. For comparison, these graphs also
include plots of the target linewidths, which show the same trends
as the peak splitting parameters. In particular, plots of 1.1�kt

(Lorentzian resonances) and 1.15�kt (Gaussian resonances) are vir-
tually identical to the condition D = 0.1, showing that for truncated
data, the target linewidth is indeed an ideal measure for the spec-
tral resolution.

2.3. Discrete and continuous representations

The next question concerns how well a continuous spectral
description represents the discrete representation. The characteris-
tics of a continuous Fourier transformation correspond to a dis-
crete description with infinite zerofilling. Thus, it is the amount
of zerofilling that distinguishes the discrete description from the
continuous. To investigate the spectral consequences of zerofilling,
Fig. 2c shows the resolution power (taken as the condition D = 0.1
for Lorentzian peaks) with and without zerofilling. Here, we note
the expected trend that interpolation by zerofilling substantially
improves the resolution. Another aspect of the interpolation is
the amount of truncation wiggles, here expressed as the maximum
difference between the spectrum resulting from processing of the
truncated dataset and a spectrum with an ideal Lorentzian peak
with the target linewidth. The wiggle intensity varies significantly
depending on the peak position relative to the data bins in the
spectrum. Fig. 2d illustrates these effects (for Lorentzian peaks),
and the shaded areas represent typical domains in which the wig-
gle height falls for various degrees of zerofilling. We observe that
the typical approach of ample zerofilling provides the most pre-
dictable behaviour, and that all cases show similar trends, so the
discrete case (corresponding to infinite zerofilling) will provide a
good measure for the wiggle height.

2.4. Lorentzian and Gaussian resonances

In the following, we consider a resonance for which the free-
induction decay (FID) is decaying exponentially leading to either
a Lorentzian or Gaussian lineshape with a natural linewidth kn.
This linewidth needs not be the relaxation-induced linewidth,
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Fig. 2. (a and b) Grey areas represent domains where the doublet peak splitting (D) is larger than 0.1 for Lorentzian (a) and Gaussian (b) resonances in plots of the peak
splitting as a function of ts employing zerofilling to 2ts. For comparison, the target linewidth, kt (solid lines) and X�kt (dashed lines) are also shown, X = 1.1 and X = 1.15 for
Lorentzian and Gaussian resonances, respectively. (c) Plot of the minimum observable peak splitting (D = 0.1) as a function of ts employing no zerofilling (dashed line) and 1
time zerofilling (doubling of the number of points) (solid line) for a Lorentzian resonance. (d) Wiggle height as a function of the zerofilling factor. 0 means no zerofilling, 1
means doubling of the number of points, i.e., zerofilling to np�2n points where n = 0,1, and 2. The shaded areas represent the typical interval of the wiggles, but the actual
amount depends on the resonance frequency of the peaks relative to the position of the data points. The solid line represents the wiggle height in the case zerofilling to np�23

or more points.
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but may contain contributions from field inhomogeneities, and
pulse-sequence imperfections. It reflects the linewidth achieved
when the signal is sampled to convergence, i.e., the spectrum con-
tains no truncation artefacts. For simplicity we will assume that
the signals are on-resonance in the rotating frame giving the fol-
lowing expressions for the FIDs

S0Lðt; knÞ ¼ expð�pkntÞ

S0Gðt; knÞ ¼ exp
ðpkntÞ2

4 ln 2

 !
ð2Þ

In analogy to this, we may introduce Lorentzian and Gaussian
apodization functions, with apodization linewidth, ka, as

ALðt; kaÞ ¼ expð�pkatÞ

AGðt; kaÞ ¼ exp �ðpkatÞ2

4 ln 2

 !
ð3Þ

The apodized signal results from multiplying the apodization
function to the ideal FID, leading to a convolution of the Fourier
transformed functions in the frequency domain. We will restrict
the analysis to Lorentzian apodization of Lorentzian signals and
Gaussian apodization of Gaussian signals, since the concept of
matched filtering predicts that the optimum SNR is achieved by
apodizing the signal with an apodization function of the same
functionality [8]. Likewise, we will not consider any resolution-
enhancing filtering functions, since this is beyond the scope of this
paper, where we aim at finding conditions for maximizing the SNR.
Clearly, all resolution-enhancing functions will increase the contri-
bution from regions of the time-domain signal with low SNR
implying a decrease in the overall SNR.

The apodized FIDs are given by
SLðt; ka; knÞ ¼ expð�pðka þ knÞtÞ ¼ expð�pLtÞ

SGðt; ka; knÞ ¼ exp �ðk
2
a þ k2

nÞðptÞ2

4 ln 2

 !
¼ expð�ðpGtÞ2Þ

ð4Þ

where we introduced the shorthand notations L = ka + kb and

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

a þ k2
nÞ=ð4ln2Þ

q
. If the signals are sampled in the time inter-

val 0 6 t 6 ts, the real part of the frequency-domain signals are
given by the Fourier transformations of the apodized FIDs:

SLðm; ts; ka; knÞ ¼ Re
Z ts

0
ðt; knÞ expð�i2pmtÞdt

� �

¼ Lþ ð2m sinð2pmtsÞ � L cosð2pmtsÞÞe�pLts

pð4m2 þ L2Þ

SGðm; ts; ka; knÞ ¼ Re
Z ts

0
SGðt; knÞ expð�i2pmtÞdt

� �

¼ expð�ðm=GÞ2Þ
2
ffiffiffiffi
p
p

G
RefErfðpGts þ im=GÞg;

ð5Þ

where Erf(z) represents the complex error function.
The frequency-domain plots in Fig. 1f are described by the

Lorentzian formula in Eq. (5). We note that in the limit ts ?1,
the wiggles disappear and the expressions approach the expected
Lorentzian and Gaussian frequency-domain functions:

lim
ts!1
ðSLðm; ts; ka; knÞÞ ¼

L

pð4m2 þ L2Þ

lim
ts!1
ðSGðm; ts; ka; knÞÞ ¼

expð�ðm=GÞ2Þ
2
ffiffiffiffi
p
p

G

ð6Þ

The intensity of the signal in the frequency domain is given by
the signal intensity at m = 0:
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SLðm ¼ 0; ts; ka; knÞ ¼
1� expð�pLtsÞ

pL

SGðm ¼ 0; ts; ka; knÞ ¼
Erfð�pGtsÞ

2pG
;

ð7Þ

which for both Lorentzian and Gaussian resonances are monoto-
nously increasing functions.

2.5. Target linewidth

To include sample issues into our discussion, a critical parame-
ter is the linewidth we can accept for our experiment, i.e., the so-
called target linewidth kt, which in our context is larger than or
equal to the natural linewidth kn. We define the target linewidth
as the actual linewidth of the truncated and apodized frequency-
domain signal in Eq. (5). To calculate it, we use the expressions
normalized signal

Snðm; ts; ka; knÞ ¼
Sðm; ts; ka; knÞ

Sðm ¼ 0; ts; ka; knÞ
ð8Þ

and find the target linewidth, which satisfies the equation

Snðv ¼ kt=2; ts; ka; knÞ ¼
1
2
: ð9Þ

There is no analytical solution to this equation unless in the lim-
it of infinitely long sampling, but since we have found that the wig-
gles will never be as high as 50%, there is only one solution for
positive values of kt, which is easy to find numerically, thereby en-
abling us to determine the entity ktðks; ka; knÞ.

2.6. Wiggles

We define the normalized wiggle function as the difference be-
tween the expression of the normalized frequency domain signal
in Eq. (7) and the ideal Lorentzian/Gaussian shapes with the same
target linewidth:

WLðm; ts; ka; knÞ ¼ Sn
L ðm; ts; ka; knÞ �

1

1þ ð2m=ktðts; ka; knÞ2Þ
WGðm; ts; ka; knÞ ¼ Sn

Gðm; ts; ka; knÞ � expð�4ln2ðm=ktðts; ka; knÞÞ2Þ
ð10Þ

The maximum wiggle height, w, is then the maximum absolute
value of the wiggle function

w ¼MaxmjWðm; ts; ka; knÞj ð11Þ

This expression for the wiggle height, when transferred to a dis-
crete sampling space, corresponds to the case of infinite zero-fill-
ing, since the Fourier transform in Eq. (5) goes to infinite time.
We note that wiggles are virtually absent in a non-zero-filled spec-
trum, but this comes at the expense of severe lack of resolution
since each resonance is defined by very few (typically one) data
points. The distance between two data points in the frequency do-
main without zero-filling will be Dm ¼ 1=ts, and since truncation
only appears in the region of short sampling times (ts < 1=kn),
the approximate number of points per resonance may be approxi-
mated by Dm=kn < 1.

2.7. Signal-to-noise ratio and sensitivity

White noise enters in our description as a random function in
each sampling point, and the overall noise will be proportional to
the square root of the number of sampling points. While data sam-
pling obviously is conducted in a discrete manner, we will remain
with a continuous description. With the restriction of equidistant
sampling, we may simply define the random noise as NðtsÞ ¼

ffiffiffiffi
ts
p

.
Here we should remember, that the noise appears in the ‘‘raw” sig-
nal before apodization, but when the signal is apodized, the noise
reduces, and our estimate the total noise in the FID is the rms aver-
age of the apodized noise

Nðts; kaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ ts

0
ðAðt; kaÞÞ2dt:

s
ð12Þ

For Lorentzian and Gaussian resonances, respectively, the expli-
cit expressions become

NLðts; kaÞ ¼

ffiffiffiffi
ts
p

for ka ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�expð�2pkatsÞ

2pka

q
for ka > 0

8<
:

NGðts; kaÞ ¼

ffiffiffiffi
ts
p

for ka ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Erfð�2pGatsÞ

2pGa

q
for ka > 0

8<
:

ð13Þ

with the shorthand notation Ga ¼ ka=
ffiffiffiffiffiffiffiffiffiffi
2ln2
p

. Measures of the SNR
and the sensitivity are given by

SNRðts; ka; knÞ ¼
Sðm ¼ 0; ts; ka; knÞ

Nðts; kaÞ
;

sensitiv ityðts; ka; knÞ ¼
Sðm ¼ 0; ts; ka; knÞ

Nðts; kaÞ
ffiffiffiffi
ts
p ;

ð14Þ

where the expressions for the signal and noise are given in Eqs. (7)
and (13), respectively. When comparing the SNR of different
experiments, it may be useful to compare the normalized SNR,
which reaches a maximum value of 1, and which may be calcu-
lated as

nSNRðts;ka;knÞ¼
SNRðts;ka;knÞ

SNRðts!1;ka ¼ ka;knÞ
¼

SNRðts;ka;knÞ
ffiffiffiffiffi
kn
p ffiffiffiffiffiffiffi

2p
p

Lorentzian

SNRðts;ka;knÞ
ffiffiffiffiffi
kn
p

2p
ln2

� �1=4 Gaussian

(

ð15Þ

where SNRðts !1; ka ¼ kn; knÞ represents the maximum achievable
SNR, corresponding to an infinitely long sampling time with
matched filtering.

3. Results and discussion

Depending on what is the most critical issue for a given exper-
iment, it is the interplay between sampling and data treatment
that is our handle to optimize the quality of a dataset obtained
within a given time frame. The quality of a spectrum will be ex-
pressed in terms of SNR, sinc wiggles, and target linewidth. In
the following, we will address these aspects in more detail leading
to general recipes for (i) analyzing the spectral outcome for a par-
ticular choice of sampling parameters (ts and ka) and (ii) defining
the optimum sampling space and the accompanying data process-
ing for practical application in the indirect dimension(s) of multi-
dimensional NMR experiments.

3.1. The apodization linewidth

The use of apodization may be desirable to increase the SNR or
to reduce truncation effects, as demonstrated in Fig. 1. To extend
these results and to exploit the 2D space spanned by the user-spec-
ified parameters, ts and ka, we have calculated the SNR, the sensitiv-
ity, and the target linewidth as a function of ts and ka, as illustrated
in Fig. 3. Focussing first on the SNR (Figs. 3a and d), it is interesting
to note that these functions, for apodization linewidths in the re-
gion ka < kn, have local maxima at short values of ts, as illustrated
by dashed lines below the surfaces, with the slices along ts for
ka = 0 corresponding to the plots in Fig. 2a. The global maxima
for these graphs are found at the condition ka = kn, while more than
90% of the maximum SNR is reached for ts � 0.7/kn in the Lorentz-
ian case and ts � 0.6/kn in the Gaussian case. We note that the
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ka = kn condition providing the maximum SNR is known as
matched filtering [8].

A plot of the sensitivity (Figs. 3b and e) is less interesting since it
shows monotonically decreasing function as a function of ts for all
values of ka, favouring the shortest possible value for ts. However,
when inspecting the plots of the resulting linewidths, here named
the target linewidth (Figs. 3c and f), we observe a very significant
increase in the target linewidth for small values of ts, as already
discussed for the special case ka = 0 in relation to Fig. 1. We observe
that for all values of ka (at least in the considered region 0 < ka < 5)
the truncation-contribution to the target linewidth is important in
the regime of short ts.

3.2. The target linewidth

For the spectroscopist, the apodization is an important tool used
to increase the quality of the spectrum, but as evidenced by the
plots in Figs. 3c and f, there is only a simple linear relation between
ka and kt in the regime of long sampling, while this linearity does
not exist in the truncation regime. Therefore, and because it is
the target linewidth that defines the appearance of the spectrum,
it seems relevant also to map the spectral properties such as
SNR, sensitivity, and sinc wiggle height as a function of the target
linewidth instead of the apodization linewidth.

Turning to a description of the SNR, sensitivity, and wiggle
height as a function of ts and kt (Fig. 4) reveals plots that are mark-
edly different from those in Fig. 3. Probably the most striking dif-
ference is that the functions are not defined for small values of ts.
This is reflecting the fact that when ts is decreased, at some point
the truncation linewidth will exceed the target linewidth. In
Fig. 4, the line in the zero-contour plane indicates this cut-off.
We note that this curve corresponds to ka = 0 and therefore is iden-
tical to the plot of the linewidth as a function of ts reported in
Fig. 1c.

Regarding the SNR and sensitivity, the conclusions made from
the plots in Fig. 3 are not changed by the new representation
shown in Fig. 4. For the SNR, we observe a global maximum at
kt = 2kn for a Lorentzian resonance and kt ¼

ffiffiffi
2
p

kn for a Gaussian
resonance, corresponding to matched filtering in both cases. When
the sample and experimental conditions permit sampling in the
SNR regime, which is characterized by the fact that the overall
acquisition time is not influenced by the choice of ts, we will just
choose a sufficiently long acquisition time to avoid any truncation
artefacts. This will normally be the case for the direct dimensions
in solid-state NMR, where the acquisition time (ts) is small com-
pared to the repetition delay. The maximum sensitivity is still
achieved at the shortest possible value for ts, but now with the low-
er bound indicated by solid lines in Fig. 4. This lower bound is
achieved when ka = 0, and hence it is the truncation linewidth that
defines kt. Consequently, wiggles will make a substantial spectral
signature close to this condition as evidenced by the plots of the
wiggle height (Figs. 4c and f). In the worst case, the wiggle height
is as large as 35% for a Lorentzian resonance (25% for a Gaussian
resonance), potentially imposing severe problems in terms of
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interpretation as false peaks. To avoid this, sampling conditions
using slightly longer values for ts should be used, since the wiggle
height drops down quite rapidly as ts increases. In the following,
we will devise a recipe for choosing the right sampling parameters.

3.3. Analyzing the consequence of specific sampling parameters

In the following, we provide a fast way to analyze the spectral
outcome for a given choice of ts and ka. First, we will revisit the re-
sults of the truncation-induced linebroadening (Fig. 1c) and wiggle
height (Fig. 1d). While the quantities SNR and sensitivity are readily
described analytically by Eq. (14), kt and w cannot be described by
simple analytical formulas. We have used the software Mupad [9]
to numerically determine the wiggle height and target linewidth as
reported in Fig. 4, and subsequently found the following empirical
formulas describing these entities

kðtÞ � 1þ a
expðbtÞ � 1

ð16Þ

c
wðtÞ � a � ErfcðbtÞ ð17Þ
which, with the coefficients a, b, and c given in Table 2, represent the
curves with less than 5% deviation. Erfc(x) denotes the complemen-
tary error function Erfc(x) = 1 � Erf(x). Note that, we have introduced
a normalized linewidth (k) and sampling time (t), which in the case of
no apodization simply are the normalized expressions of kt and ts:

k ¼ kt=kn and
t ¼ ts � kn

ð18Þ

If apodization is applied, the normalized linewidth is related to
the sampling parameters by the following expression

k ¼
kt

kaþkn
ðLorentzianÞ

kt

k2
aþk2

n
ðGaussianÞ

(
ð19Þ

while the expression in Eq. (16) still holds for ts. Equipped with
these expressions, it is very simple to analyze evaluate the target
linewidth (Eqs. (18) and (15)), wiggle height (Eq. (16)), SNR, and
sensitivity (Eq. (14)), from a specific choice of ts and ka.

In order to facilitate the analysis, we have made a utility avail-
able from our web site (http://www.bionmr.chem.au.dk). This util-

http://www.bionmr.chem.au.dk


Table 2
Coefficients for the empirical description of the truncation linewidth (k) and wiggle
height (w).a

Lineshape Parameter a b c Equation

Lorentzian k 1.669 2.729 (16)
w 0.374 1.141 1.063 (17)
w 1.867 1.525 (21)

Gaussian k 2.291 3.735 (16)
w 0.241 1.519 2.461 (17)
w 2.466 1.947 (21)

a c.f. Eqs. (16), (17), and (21).
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ity does not rely on the approximate expressions in Eqs. (15) and
(16), but uses the more accurate values from the plots in Fig. 1.

3.4. Optimized sampling conditions

Having established the basis for analyzing specific acquisition
and apodization parameters as described above, it is very relevant
bring the analysis one step further and develop a simple recipe for
setting up the optimized sampling conditions, in terms of the max-
imum sampling time, in order to reduce the experiment time or
achieve the desired resolution. To facilitate this, the flow chart in
Fig. 5 provides a guideline to determination of the relevant exper-
imental parameters under certain conditions. The case handled in
the previous section assumed that the natural linewidth was
known, and analyzed the effect of certain acquisition- and process-
ing parameters, thus ending up in box 1 in Fig. 5. In the following,
we will demonstrate when the remaining boxes are relevant.

Considering altogether the sample- and experiment-specific
requirements for resolution and truncation artefacts given a cer-
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Fig. 5. Flow chart illustrating the general procedure for analyzing or setting up experime
determine the unknown sampling and processing parameters.
tain natural linewidth, we have identified the following two entries
as the most efficient way to take into account all the sample-re-
lated issues:

� Specify the maximum acceptable target linewidth (kt) to provide
necessary resolution.

� Specify the maximum acceptable wiggle height (w) to avoid
erroneous interpretations of sinc wiggles.

With these choices, we follow the flow chart and end up in box
2 in Fig. 5. Based on these two parameters (kt and w), we may read-
ily derive the optimized sampling conditions by a simple analysis
of the graphs in Fig. 4. We want to extract values for ts, ka, the
SNR, and the sensitivity for the specified values of kt and w. This
procedure involves (i) finding the value for t from w using Eq.
(15). While it is not possible to obtain an analytical solution, it is
simple to find the solution numerically. (ii) Using this value for t
as input to Eq. (15) allows us to calculate k, which represents the
truncation-contribution to the target linewidth. (iii) From this,
we calculate the remaining linewidth, kr ¼ kt=k. (iv) If kr < kn, there
exists no solution (vide infra), but when kr P kn, ka is given by

ka ¼
kr � kn ðLorentzianÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
r þ k2

n

q
ðGaussianÞ

(

ts ¼
t
kr
:

ð20Þ

Equipped with these parameters, the SNR and sensitivity may
readily be calculated from Eq. (14). The failing condition (kr < kn)
occurs when the truncation is not too severe, in which case the
wiggle height does not reach so high values (see the low kt-region
in Figs. 4c and f).
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A simpler alternative to the approach above would be to go for
the highest possible sensitivity, i.e., by sampling in the regime where
the target linewidth is only given by truncation (corresponding to
ka = 0). Following the flow chart this leads us to box 3 in Fig. 5. In
this case, the only free variable is the target linewidth, while ts is
found from Eq. (16). Knowing these two parameters, the remaining
parameters are determined as described for the analysis above.

To ease the setup of proper experimental conditions, Fig. 6
shows contour plots of ts, ka, and the sensitivity as a function of kt

and w, as a condensed representation of the data in Fig. 3 and
Fig. 4. Equipped with these graphs it is straightforward to setup
the experiments to fulfill the requirements on of kt and w and rap-
idly evaluate the prize paid in terms of eventually lost sensitivity.
In addition, the two procedures for setting up new experimental
protocols are implemented in the above-mentioned utility avail-
able from our web site (http://www.bionmr.chem.au.dk).

As a final point to the analysis, we note that there is a simple
relation between the product of the sampling time and the target
linewidth and the wiggle height as reported in Fig. 7. These curves
may be described by the approximate empirical formulas

wðts; ktÞ � a � ErfcðbtsktÞ; ð21Þ

where the coefficients a and b are listed in Table 2.
The plots in Fig. 7 are particularly useful if the natural linewidth

is unknown, as illustrated in box 4 in Fig. 5. In this case, ts may be
determined from the decided values for w and kt and then apodize
the spectrum appropriately to match the target linewidth. The
appropriate apodization linewidth may be calculated as

http://www.bionmr.chem.au.dk
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ka ¼
kt � ke ðLorentzianÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
t þ k2

e

q
ðGaussianÞ;

(
ð22Þ

where ke is the experimentally determined linewidth in the spec-
trum processed without apodization.
120140160
15N chemical shift (ppm)

-4

-2

4

2

0

100

1 H
-1

5 N
 d

ip
ol

ar
 c

ou
pl

in
g 

(k
H

z)

a

Fig. 8. (a) Experimental 1H–15N separated-local field spectrum of a single crystal of NAL. (
of 124 ppm. (c) Trace in the direct chemical shift dimension at a dipolar frequency of �
3.5. Experimental case: Two-dimensional 1H–15N SLF spectra of a
single crystal of NAL

To illustrate the use of controlling the acquisition parameters as
described above, we use the acquisition of high-resolution 2D
1H–15N separated-local field (SLF) experiments [10] of a single
crystal of NAL as an example. Such a sample serves as a model sys-
tem for oriented membrane protein systems, which represent a
challenging case for NMR due to the generally low sensitivity
caused by the low protein density in presence of abundant
amounts of lipids. The 2D spectrum of the NAL crystal with an arbi-
trary orientation acquired using the Polarization Inversion Spin Ex-
change at the Magic Angle (PISEMA) pulse sequence [11] is shown
in Fig. 8. The spectrum contains the expected four resonances, one
from each of the four molecules in the unit cell, respectively [12].
In the following, we will investigate the peak located at
d(15N) = 124 ppm with a dipolar splitting of �7.0 kHz correspond-
ing to an effective 1H–15N dipole–dipole coupling of �8.54 kHz
when encountering the theoretical scaling factor of

ffiffiffiffiffiffiffiffi
2=3

p
of the

SEMA block.
A trace along the 15N chemical shift dimension (Fig. 8c) of the

2D spectrum sampled with sufficiently large values for ts to avoid
truncation artefacts in both dimensions (ts(15N) = 25 ms,
ts(1H–15N) = 10 ms) reveals a natural linewidth of kn = 59 Hz and
a Gaussian lineshape, while a natural linewidth of kn = 140 Hz is
observed for the indirect 1H–15N dipole–dipole coupling dimen-
sion. Such long sampling times result in quite unfavorable sensitiv-
ity of the spectrum. For the direct dimension, the sampling time of
ts = 25 ms is negligible compared to the repetition delay of 4 s
implying that the overall experiment time is not, to a good approx-
imation, influenced by our choice of ts. Hence, we should optimize
the SNR for this dimension, while the sensitivity makes no sense.
Since ts has already been decided, this analysis corresponds to
box 1 in Fig. 5. Table 3 reports the normalized SNR (nSNR = 0.671)
for the direct dimension indicating that the SNR may be improved
by almost 50% by applying matched filtering (Gaussian apodization
with ka = kn) by which nSNR = 1 is achieved at the expense of hav-
ing a target linewidth of kt = 83.4 Hz (see Table 3). Traces of the
spectra corresponding to these different parameters are shown in
Fig. 9.

While a long sampling time and matched filtering provides the
best SNR, it may be desirable to shorten the sampling time in order
to reduce the time with high-power decoupling turned on, espe-
cially for heat-sensitive samples like membrane proteins. If we
100120140160
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b) Trace in the indirect heteronuclear dipolar coupling dimension at a chemical shift
3.5 kHz.



Table 3
Experimental parameters for the 2D separated-local field spectrum in Fig. 9.

kn (Hz) ts (ms) npa ka (Hz) kt (Hz) w nSNRb sensitivity Figure indexd

15 N chemical shift (direct dimension)
59 25 1008 0 59 0 0.671 n/ac c

25 1008 59 83.4 0 1 n/ac e
8.23 332 0 83.4 0.14 0.941 n/ac g
10 403 50 83.4 0.05 0.985 n/ac i

1H–15N dipole-dipole coupling (indirect dimension)
140 10 250 0 140 0 0.689 0.335 d

10 250 140 198 0 1 0.487 f
2 50 0 315 0.21 0.839 0.914 h
2.68 67 257 315 0.05 0.887 0.835 j

a np indicates the number of data points assuming spectral widths of 40,323 Hz and 25,000 Hz for the direct and indirect dimensions, respectively.
b Normalized SNR defined in Eq. (15).
c The sensitivity is not a relevant parameter for the indirect dimension with such a short ts value.
d Figure index in Fig. 9.
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stick to kt = 83.4 Hz, we may use Eq. (16) to determine that
ts = 8.23 ms is the shortest possible sampling time fulfilling this,
using the approach leading to box 3 in Fig. 5. The spectrum, using
this sampling time and processed without apodization, is shown in
Fig. 9g. The spectrum reveals the expected target linewidth and
sacrifices the SNR by only 5.9%, although it also shows clearly vis-
ible truncation wiggles, which according to Eq. (11) amount to 14%
of the total intensity (see Table 3). If we expect these wiggles to
cause problems with the analysis of the spectrum, we may restrict
the wiggle height to a smaller value (procedure leading to box 2 in
Fig. 5) by increasing ts and applying apodization. For example, let
us use the restriction w = 0.05. In this case the solution to Eqs.
(16) and (17), using the procedure described in relation to Eq.
(20), report that the acquisition and processing should be carried
out with the following parameters: ts = 10 ms, ka = 50 Hz (Fig. 9i).
This leads to the same target linewidth as before but with a re-
duced wiggle height, and a SNR, which is only 1.5% lower than
the maximum achievable (Table 3).

Addressing the indirect dimension, we are now in a case where
the overall experiment time is directly proportional to ts, provided
we maintain a fixed value for the spectral width. In this case, the
focus will be to optimize the sensitivity, since this parameter re-
ports how efficiently we accumulate the data in the indirect
dimension. Clearly, the set of parameters used for the spectrum
in Figs. 8 and 9d provide a high resolution but a very poor sensi-
tivity of 0.335 (Table 3). Applying matched filtering (Fig. 9f) im-
proves this number somewhat (0.487), but it is obvious that
matched filtering is not the means to optimize the sensitivity.
For large membrane protein samples [13], it will typically not
be possible to record that many t1 increments, and hence ts values
on the order of a few ms are commonly applied [14–17]. An anal-
ysis of employing a sampling time of ts = 2 ms (procedure leading
to box 1 in Fig. 5) shows that the target linewidth will be
kt = 315 Hz (Table 3, Fig. 9h) and that the spectrum will display
substantial wiggles, amounting to 21% of the peak height. How-
ever, the sensitivity is roughly doubled (0.914) compared to what
is achieved using the long sampling time of 10 ms. Here, the
intense wiggles may be problematic, so it may be desirable to
reduce the wiggle height using the approach described in box 2
in Fig. 5. Using the parameters w = 0.05 and kt = 315 Hz as an
example, we find that this may be achieved using ts = 2.68 ms
and ka = 257 Hz with a sensitivity of 0.835 (Table 3, Fig. 9j). Imme-
diately, one would believe that the increase of ts from 2 to
2.68 ms results in a 1.34-fold increase in the overall experiment
time, but as seen from the ratios of the sensitivities 0.835/
0.914 = 0.91, the latter experiment will only lack 9% of the inten-
sity if the two experiments were acquired using the same overall
experiment time.

In the discussion above, we have not dealt with cases where the
natural linewidth varies between peaks in the spectrum. Clearly,
this will often be the case, especially for solid samples where,
e.g., the efficiency of the decoupling may vary with the nuclear spin
interactions leading to different values for kn for different reso-
nances. Such variations in natural linewidth will obviously also
be reflected in the target linewidth, but for Gaussian resonances,
which are most typical for solid samples, the effect will be reduced
due to the square root dependence (see Eq. (22)). To give an idea on
the variations in the target linewidth and wiggle height caused by
variations in kn, we consider the direct dimension of the 2D SLF
experiment, sampled using ts = 10 ms (Fig. 9i). Variations in the
natural linewidth (kn = 59 Hz) by ±20% will lead to variations in
kt by less than 10% and changes in the wiggle height smaller than
0.03. Consequently, estimation of an approximate average value for
the natural linewidth will be sufficient to provide a fair prediction
of the spectral attributes. In cases where the natural linewidth is
completely unknown, we may still estimate the wiggle height for
each peak using the plot in Fig. 7 once the target linewidth is
measured.

4. Experimental

The NAL crystals were produced as described previously [18].
For the solid-state NMR experiments, a high-quality crystal of
approximate size 0.5 � 0.5 � 0.3 mm3 was selected. The experi-
ment was performed on a Bruker Avance 400 spectrometer with
a 9.4 T magnet with a 1H and 15N resonance frequencies of
400.13 and 40.55 MHz employing a 4 mm Bruker triple-resonance
MAS probe in double-resonance 1H–15N configuration. The PISEMA
[11] pulse sequence employed a 1H RF field strength of 100 kHz for
the pulses and decoupling period, which used SPINAL-64 decou-
pling [19], while it was reduced to 41.8 kHz during the 1 ms CP
period as well as the t1 period. The 15N RF field strength was
41.8 kHz during CP and 50 kHz during t1 to meet the Hartmann–
Hahn condition with the off-resonance field on 1H. The t1 dimen-
sion employed 250 increments of 40 ls corresponding to a spectral
width (sw) of 25 kHz and ts = 10 ms, while the direct dimension
was sampled using sw = 40,323 Hz and ts = 25 ms. Each t1 value
was acquired using 8 scans with a repetition delay of 4 s.

To evaluate the consequences of different ts values, as investi-
gated in Fig. 9, only the appropriate number of points, calculated
as np = sw�ts (listed in Table 3), were used and zero-filled to
2048/4096 points in the indirect/direct dimensions. All spectra
were processed using SIMPSON [20–22].

5. Conclusion

We have presented a thorough analytical and numerical analy-
sis of the consequences of appropriate definition of the dimensions
of the sampling space and the associated use of apodization to im-
prove spectral quality. This leads to simple procedures to setup
optimal sampling used to define the points inbetween time 0 and
the maximum sampling time derived here. We anticipate that
our simple protocol will find widespread application for optimizing
the outcome of multiple-dimensional NMR experiments where the
length of the experiments and potential sample heating effects
through decoupling during acquisition may be important issues.
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